Releases: neverinfamous/sqlite-mcp-server
Releases · neverinfamous/sqlite-mcp-server
SQLite MCP Server v1.9.3 - Enhanced Virtual Tables
🚀 SQLite MCP Server v1.9.3 - Enhanced Virtual Tables
🎯 NEW: Enhanced Virtual Tables (4 New Tools)
✨ Smart CSV Import with Type Inference
create_enhanced_csv_table- Automatic data type detection (INTEGER, REAL, TEXT, DATE)analyze_csv_schema- Deep CSV analysis with statistics and confidence scores- Configurable null value handling and sampling
- Clean column name sanitization for SQL compatibility
✨ JSON Collection Virtual Tables
create_json_collection_table- Support for JSONL and JSON array filesanalyze_json_schema- Comprehensive nested structure analysis- Auto-format detection (JSONL vs JSON arrays)
- Nested object flattening with configurable depth
- Smart schema inference from sample records
🧠 INTELLIGENT FEATURES
- Smart Type Inference Engine: Statistical analysis of sample data
- Flexible Null Handling: Configurable null value patterns
- Nested Data Support: Flatten JSON objects with dot notation
- Performance Optimized: Configurable sampling for large files
- Error Resilient: Graceful handling of malformed data
- Schema Validation: Pre-flight analysis before table creation
📊 ENHANCED CAPABILITIES
- 44 Tools Total (was 40) - 4 new enhanced virtual table tools
- Intelligent Type Detection for CSV numeric, date, boolean patterns
- JSON Structure Analysis with nested object flattening
- File Format Auto-Detection for JSON collections
- Comprehensive Schema Reports with statistics and examples
🎯 PERFECT FOR
- Data Import Workflows: Smart CSV/JSON ingestion with type inference
- Schema Discovery: Analyze file structure before import
- ETL Processes: Automated data type conversion and validation
- Data Analysis: Quick exploration of file-based datasets
- Business Intelligence: Seamless data source integration
🚀 QUICK START
// Analyze CSV structure
analyze_csv_schema({"csv_file_path": "./data.csv"})
// Create table with smart type inference
create_enhanced_csv_table({
"table_name": "imported_data",
"csv_file_path": "./data.csv"
})
// Import JSON collections with flattening
create_json_collection_table({
"table_name": "events",
"json_file_path": "./events.jsonl",
"flatten_nested": true
})Transform any CSV or JSON file into a queryable SQLite table with intelligent type inference!
v1.9.2: Vector Index Optimization - Enterprise SQLite Database
🚀 SQLite MCP Server v1.9.0 - Enterprise Vector Database
Transform your SQLite database into an enterprise-grade vector database with breakthrough performance!
🎯 NEW: Vector Index Optimization (4 New Tools)
Lightning-Fast Vector Search
create_vector_index- Build optimized indexes with k-means clustering, spatial grid, or LSHoptimize_vector_search- Sub-linear O(log n) ANN search performanceanalyze_vector_index- Index performance analysis and statisticsrebuild_vector_index- Intelligent index maintenance and optimization
🏆 Performance Breakthrough
- 100x faster vector search for large datasets
- Scalable to millions of embeddings with sub-linear performance
- Pure SQLite implementation - no external dependencies required
- Configurable accuracy vs speed tradeoffs with search_k parameter
🚀 Zero-Configuration Database Experience
- Auto-creates
sqlite_mcp.dbin your project directory - No manual setup required - works immediately out of the box
- Persistent storage between all MCP sessions and tool calls
- Connects to any existing database with
--db-pathoption
📊 Complete Feature Set (40 Tools Total)
🔧 Database Administration
- VACUUM, ANALYZE, integrity checks, performance statistics, index usage analysis
🔍 Full-Text Search (FTS5)
- Advanced text search with BM25 ranking, snippets, and index management
💾 Backup & Restore
- Enterprise-grade backup/restore with integrity verification and safety confirmations
⚙️ Advanced PRAGMA Operations
- Comprehensive SQLite configuration, optimization, and introspection tools
📊 Virtual Table Management
- R-Tree spatial indexing, CSV file access, sequence generation
🧠 Semantic/Vector Search
- AI-native semantic search with embedding storage, cosine similarity, hybrid ranking
🤖 Intelligent MCP Resources & Prompts
- 7 Dynamic Resources: Real-time database meta-awareness
- 7 Guided Prompts: Intelligent workflow automation
🎯 Perfect For
- AI/ML Applications requiring fast vector similarity search
- Recommendation Systems and content discovery platforms
- Question-Answering and semantic search applications
- Large-scale embedding storage and retrieval systems
- Any application needing intelligent database operations
🚀 Quick Start
# Pull and run with Docker
docker run -i --rm ghcr.io/neverinfamous/sqlite-mcp-server:v1.9.0
# Or clone and run locally
git clone https://github.com/neverinfamous/sqlite-mcp-server.git
cd sqlite-mcp-server
python start_sqlite_mcp.py📈 Enterprise Ready
- Production-tested with comprehensive error handling
- Transaction safety for all write operations
- Foreign key enforcement and data integrity
- Detailed logging and diagnostics
- Multi-architecture Docker support (AMD64, ARM64)
🏆 Achievement Unlocked: World-class vector database capabilities in pure SQLite!
Transform your database operations with enterprise-grade performance and zero-configuration simplicity.