| title | emoji | colorFrom | colorTo | sdk | sdk_version | app_file | pinned | license |
|---|---|---|---|---|---|---|---|---|
Fashion-MNIST DDPM Generator |
👗 |
purple |
pink |
gradio |
4.0.0 |
app.py |
false |
mit |
Generate realistic fashion items using a trained Denoising Diffusion Probabilistic Model (DDPM).
- 10 Fashion Categories: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot
- Classifier-Free Guidance: Control the strength of class conditioning
- Batch Generation: Generate multiple samples at once
- All Categories View: Generate samples for all 10 categories simultaneously
This app uses a DDPM trained on the Fashion-MNIST dataset with:
- U-Net architecture with attention
- Cosine noise schedule
- Classifier-free guidance for conditional generation
- EMA (Exponential Moving Average) weights for better quality
- Select a Category: Click on any fashion category button to generate samples
- Adjust Settings:
- Number of Samples: How many images to generate (1-16)
- Guidance Scale: Higher values = stronger class conditioning (1.0-10.0)
- Generate All: Use the "Generate All Categories" tab to see samples from all categories
- Model: Small U-Net (32 base channels)
- Training: 150 epochs on Fashion-MNIST
- Diffusion Steps: 500
- Image Size: 28x28 (upscaled to 224x224 for display)
Built with: