Clone the repository
git clone https://github.com/IntellisenseLab/FabVis-RD-Preprocess.gitCreate a folder to hold the base dataset
mkdir datasetOptionally download existing data set from here and extract.
For installing up dataset labelling software run,
pip3 install labelImgFor starting dataset labelling software run,
cd dataset
labelImgFor starting the dataset preprocessing process run,
python3 preprocess.pyFor checking the dataset distribution after preprocessing run,
python3 checkStatistics.pyFor checking the dataset for unannotated images run,
python3 checkDataset.py| Defect | Count |
|---|---|
| Slubs | 44 |
| Barre | 7 |
| Thick Yarn | 0 |
| Foreign Yarn | 3 |
| Missing Line | 64 |
| Holes | 68 |
| Knots | 0 |
| Misknit | 8 |
| Dye Spot | 12 |
| Crease line/Crush Mark | 423 |
| Stains/Dirty | 380 |
| Stop marks | 0 |
| Snagging | 34 |
| Laddering | 26 |
| Defect | Image Number |
|---|---|
| Abrasion | 1 |
| Dead Cotton | 88, 89, 90 |
