Skip to content
Open
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/release_notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ Upcoming Release

* Corrected CO2 content in biogas

* Change to DEA costs for Fischer-Tropsch and methanolisation

`v0.13.2 <https://github.com/PyPSA/technology-data/releases/tag/v0.13.2>`__ (13th June 2025)
=======================================================================================

Expand Down
28 changes: 0 additions & 28 deletions inputs/manual_input.csv
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Major unwanted changes here (additional empty columns added). Please clean up.
Also please make sure that GH can render it, currently the format is corrupt.

Original file line number Diff line number Diff line change
@@ -1,15 +1,6 @@
technology,parameter,year,value,unit,currency_year,source,further_description
methanation,investment,2020,748,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2020,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why remove the source here? If we change the source / data for methanolisation, we either need to keep the original reference here or also change the assumption. But leaving "Guesstimate" hanging alone is not traceable.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

unintentional, seems my editor has been spinning, sorry! Will correct and double check.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No worries, been there myself before, that's why we review. :)

methanation,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
methanation,hydrogen-input,0,1.282,MWh_H2/MWh_CH4,,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon).
methanation,carbondioxide-input,0,0.198,t_CO2/MWh_CH4,,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion).
methanation,investment,2030,654,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2030,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
methanation,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
methanation,investment,2050,500,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2050,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
methanation,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
H2 (g) pipeline,investment,2020,363.08,EUR/MW/km,2023,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)"
H2 (g) pipeline,lifetime,2020,50,years,2015,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413."
H2 (g) pipeline,FOM,2020,4,%/year,2015,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413."
Expand Down Expand Up @@ -219,16 +210,6 @@ methanol-to-kerosene,lifetime,2050,30,years,-,"Concawe (2022): E-Fuels: A techno
methanol-to-kerosene,investment,2050,200000,EUR/MW_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
methanol-to-kerosene,FOM,2050,4.5,%/year,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
methanol-to-kerosene,VOM,2050,1.35,EUR/MWh_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
Fischer-Tropsch,efficiency,2020,0.799,per unit,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",
Fischer-Tropsch,investment,2020,788000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,investment,2030,677000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,investment,2050,500000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,hydrogen-input,2020,1.531,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Fischer-Tropsch,hydrogen-input,2030,1.421,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Fischer-Tropsch,hydrogen-input,2040,1.363,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Expand All @@ -241,15 +222,6 @@ Fischer-Tropsch,carbondioxide-input,2020,0.36,t_CO2/MWh_FT,,"DEA (2022): Technol
Fischer-Tropsch,carbondioxide-input,2030,0.326,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
Fischer-Tropsch,carbondioxide-input,2040,0.301,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
Fischer-Tropsch,carbondioxide-input,2050,0.276,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
methanolisation,investment,2020,788000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,investment,2030,677000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,investment,2050,500000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,electricity-input,0,0.271,MWh_e/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",
methanolisation,hydrogen-input,0,1.138,MWh_H2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH
methanolisation,carbondioxide-input,0,0.248,t_CO2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",
Expand Down
Loading
Loading