GPU-accelerated CVaR portfolio optimization using NVIDIA cuOpt on H200 GPUs.
python flows/portfolio/flow.py --no-pylint --environment=fast-bakery run --with kubernetesSolves CVaR (Conditional Value-at-Risk) portfolio optimization on GPU:
- Fetches historical price data (or generates synthetic data)
- Generates Monte Carlo scenarios for risk estimation
- Solves LP optimization using cuOpt's GPU-accelerated solver
- Sweeps across risk levels to build an efficient frontier
- Produces a Metaflow card with visualizations
optimization-project/
├── flows/portfolio/flow.py # Main optimization flow
├── src/__init__.py # Package policy for Metaflow
└── README.md
--n_assets: Number of assets (default: 100)--n_scenarios: Monte Carlo scenarios (default: 1000)--confidence: CVaR confidence level (default: 0.95)